Triple Scission of a Six-Membered Ring on the Surface of C_{60} via Consecutive Pericyclic Reactions and Oxidative Cobalt Insertion

María-José Arce, Argimiro L. Viado, Yi-Zhong An, Saeed I. Khan, and Yves Rubin*

Department of Chemistry and Biochemistry University of California
Los Angeles, California 90095-1569
Received January 16, 1996

One of the main challenges in fullerene chemistry is the preparation of endohedral metal- C_{60} complexes in isolable and stable form, which would provide answers to a number of questions regarding their potential as novel superconductors, ferromagnets, or other interesting materials. ${ }^{1}$ While lanthanide endohedral complexes of higher fullerenes (e.g. La@ C_{82}) have been available for some time, analogous lanthanide- C_{60} complexes do not seem to be stable or readily isolable. ${ }^{2,3}$ Thus, the graphite evaporation method ${ }^{4}$ is limited in the choice of metal or fullerene size, and new approaches to endohedral fullerene complexes have become necessary. Apart from total synthetic approaches, ${ }^{5}$ the alternative method consisting of opening a temporary hole within a fullerene framework has already shown its wonders in the preparation of noble-gaslabeled fullerenes under high temperature and pressure (e.g. $\left.{ }^{3} \mathrm{He} @ \mathrm{C}_{60}\right) .{ }^{6}$ Recent work has shown that permanent openings consisting of 11- and 14-membered rings can be created on $\mathrm{C}_{60}{ }^{7,8}$ but the hole is too small or hindered to allow the introduction of an atom into the fullerene framework. In this context, we are reporting the unprecedented formation of the cobalt(III) complex 1 resulting from a sequential triple scission of a six-membered ring on C_{60} affording a 15 -membered ring. This type of complex could be one of the most promising candidates for the introduction of a metal into the C_{60} framework.

This work originated from the discovery that diene $\mathbf{2}^{9}$ undergoes a very facile photochemically promoted rearrangement to the stable bridged bis-fulleroid 3. This process occurs via the initial $[4+4]$ photoadduct $3 \mathbf{a}$ (not observed), which undergoes a thermally allowed [$2+2+2$] cycloreversion to afford a bis-methano[12]annulene structure (3). The [4 + 4] photocyclization reaction has precedent in the classic work of Masamune and Ginsburg on derivatives of 9,10-dihydronaph-

[^0]thalene, but these photoadducts are unstable. ${ }^{10}$ Calculations at the AM1 and PM3 levels show that the [4 +4] photocyclization reaction of 2 to 3 a goes uphill by $\sim 27 \mathrm{kcal} / \mathrm{mol}$, and the [$2+$ $2+2$] ring opening to 3 provides an overall $14-24 \mathrm{kcal} / \mathrm{mol}$ energy gain (Table 1).

1

To obtain significant amounts of compound $\mathbf{3}$, we developed a straightforward synthesis bypassing the need to isolate the oxygen-sensitive diene $2 .{ }^{9}$ Addition of a 2 -fold excess of 1-((trimethylsilyl)oxy)-1,3-butadiene to $\mathrm{C}_{60}\left(\mathrm{PhCH}_{3}\right.$, reflux) afforded the silyl ether $\mathbf{4}$, which was usually not isolated. Acidic aqueous workup furnished the allylic alcohol 5 in up to gram quantities, which was simply purified by filtration through a pad of silica gel with toluene. Photolysis (sunlamp) under reflux and acidic conditions (TsOH) afforded good yields of the bisfulleroid 3.

Bis-fulleroid $\mathbf{3}$ is purple in solution like all known fulleroids. The structure of $\mathbf{3}$ was deduced from the high symmetry displayed by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and the characteristic UV-vis spectrum (supporting information). A gated decoupled ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3} / \mathrm{CS}_{2}, 1: 1\right)$ further confirmed the presence of a fulleroid bridgehead $\mathrm{C}-\mathrm{H}$ resonance at 43.3 ppm (dt) with ${ }^{1} J_{\mathrm{CH}}=140.4$ and ${ }^{2(3)} J_{\mathrm{CH}}=7.1 \mathrm{~Hz}$ (a cyclopropane $\mathrm{C}-\mathrm{H}$ should have ${ }^{1} J_{\mathrm{CH}} \approx 160-175 \mathrm{~Hz}$). ${ }^{12}$ The olefinic $\mathrm{C}-\mathrm{H}$ at 127.9 ppm is a ddd with ${ }^{1} J_{\mathrm{CH}}=167.8,{ }^{2} J_{\mathrm{CH}}=7.0$, and ${ }^{3} J_{\mathrm{CH}}$ $=5.0 \mathrm{~Hz}$. In addition, five C_{60} carbons at 126.4 (d), 138.7 (m), 139.9 (d), 140.6 (d), and 149.9 ppm (d) also show longrange couplings (two two-bond and three three-bond J_{CH}). However, these data did not allow us to dispel another, but much less likely, positional isomer of $\mathbf{3}$ having the same C_{s}-symmetry (bridgeheads at the $1,2,3,4$-positions), ${ }^{13}$ and we set out to obtain an X-ray structure of this interesting compound.

[^1]Table 1. Calculated Heats of Formation and Relative Energies ($\mathrm{kcal} / \mathrm{mol}$) for Compounds 2, 3a, 3, and $\mathrm{C}_{60}{ }^{11}$

compd	AM1 (rel energy)	PM3 (rel energy)		AM1 compd (rel energy)	PM3 (rel energy)
$\mathbf{2}$	979.95	819.48	$\mathbf{3}$	955.86	806.01
	(24.09)	(13.47)		(0)	(0)
$\mathbf{3 a}$	1007.48	846.48	C $_{60}$	973.34	811.75
	(51.62)	(40.47)		(17.48)	(5.74)

Figure 1. X-ray structure of cobalt complex 1.
After several unsuccessful attempts on $\mathbf{3}$ and some alkyl derivatives, ${ }^{14}$ we decided that a metal derivative would be the most likely candidate for X-ray diffraction. An attractive idea was that the eight-membered ring formed by the ethylene bridge, the two methano bridgeheads, and the 1,2,3,4-diene moiety on 3 strongly resembles the COD ligand (COD $=1,5$-cyclooctadiene) in its geometry. Thus, we made the choice of using cyclopentadienylcobalt(I) as the metal fragment, and reaction of 3 with $\mathrm{CpCo}(\mathrm{CO})_{2}$ successfully afforded a new stable complex (1). Slow evaporation of complex $\mathbf{1}$ from $\mathrm{CS}_{2} /$ toluene afforded small prisms suitable for X-ray structural determination.

The crystal structure of complex $\mathbf{1}$ shows that the ethylene bridge has indeed acted as an effective η^{2}-handle to the metal (Figure 1). ${ }^{15}$ To our surprise and delight, the $\mathrm{C} 1-\mathrm{C} 59$ bond within the five-membered ring adjacent to the bis-methano[12]annulene ring of $\mathbf{3}$ has been broken by oxidative insertion of the cobalt. The distance between the C1 and C59 carbons is 2.41(1) \AA, and the $\mathrm{C} 1-\mathrm{Co}$ and $\mathrm{C} 59-\mathrm{Co}$ bond lengths are 1.923(8) and $1.902(8) \AA$, respectively, within known single $C\left(\mathrm{sp}^{2}\right)-$ Co bond lengths, ${ }^{16}$ while the $\mathrm{C} 1-\mathrm{Co}-\mathrm{C} 59$ angle is $78.1(3)^{\circ}$.

[^2]The facility by which the $\mathrm{C} 1-\mathrm{C} 59$ bond in $\mathbf{3}$ is broken is analogous to that seen in the reaction of $\mathrm{CpCo}(\mathrm{CO})_{2}$ with cyclobutenediones. ${ }^{17}$

The bond lengths between the ethylene bridge carbons C 4 and C5 and the cobalt are $2.119(9)$ and $2.112(10) \AA$, respectively, which are somewhat longer than those observed in $\mathrm{CpCo}-$ (COD). ${ }^{18}$ The alkene bridge $\mathrm{C} 4-\mathrm{C} 5$ bond length, at 1.329 (14) \AA, is barely different from that calculated for $3(1.336 \AA$ by AM1). ${ }^{11}$ As shown by the shaded carbon atoms C1, C2, C8, $\mathrm{C} 7, \mathrm{C} 58$, and C59, the six-membered ring originally flanking the cyclohexadiene moiety in $\mathbf{2}$ has effectively been cleaved into three alkene moieties resembling compound $\mathbf{6 b}$ through a formal $\left[\pi 2^{\mathrm{s}}+\pi 2^{\mathrm{s}}+\pi 2^{\mathrm{s}}\right]$ cycloreversion of a cis-trishomobenzene ($\mathbf{6 a}$). ${ }^{19}$ The distances in $\mathbf{1}$ between the sp^{2} carbons $\mathrm{C} 2-\mathrm{C} 8$ and $\mathrm{C} 7-\mathrm{C} 58$ holding the methano bridges are 2.32(1) and 2.34(1) \AA, respectively. The "trimethano[15]annulene" opening within the C_{60} framework is the largest annulene ring created thus far on a fullerene. Molecular dynamics calculations performed on the hypothetical $\mathrm{C} 1-\mathrm{C} 59$-bonded thioether to simulate the behavior of $\mathbf{1}$ show that vibrational modes favor the expansion of the cavity to a point that would allow a $\mathrm{C} 1-$ C59-attached metal to slip inside the fullerene under proper thermal activation. We are currently pursuing this goal.

Acknowledgment. We thank the National Science Foundation (CHE-9457693), the Arnold and Mabel Beckman Foundation, and the Office of Naval Research (N00014-94-1-0534) for their support. A.L.V. acknowledges the Ministerio de Educacion y Ciencia (Spain) for a postdoctoral fellowship.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 , 3}$, and 5; UV-vis absorption spectrum of 3; X-ray structure of complex 1: fully labeled view of the structure, tables of atomic coordinates, displacement parameters, bond lengths, bond angles, and torsion angles (19 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA9601200

(17) (a) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Blount, J. F. J. Organomet. Chem. 1980, 202, C73-C76. (b) Cho, S. H.; Wirtz, K. R.; Liebeskind, L. S. Organometallics 1990, 9, 3067-3072.
(18) Ondracek, J.; Schehlmann, V.; Maixner, J.; Kratochvil, B. Collect. Czech. Chem. Commun. 1990, 55, 2447-2452.
(19) (a) de Meijere, A.; Kaufmann, D.; Schallner, O. Angew. Chem., Int. Ed. Engl. 1971, 10, 417-418. (b) Kaufmann, D.; Fick, H.-H.; Schallner, O.; Spielman, W.; Meyer, L.-U.; Gölitz, P.; de Meijere, A. Chem. Ber. 1983, 116, 587-609. (c) Prinzbach, H.; Stusche, D. Angew. Chem., Int. Ed. Engl. 1970, 9, 799-800.

[^0]: (1) (a) Funasaka, H.; Sakurai, K.; Oda, Y.; Yamamoto, K.; Takahashi, T. Chem. Phys. Lett. 1995, 232, 273-277. (b) Suzuki, T.; Maruyama, Y.; Kato, T.; Kikuchi, K.; Achiba, Y. J. Am. Chem. Soc. 1993, 115, 1100611007.
 (2) (a) Edelmann, F. T. Angew. Chem., Int. Ed. Engl. 1995, 34, 981985. (b) Takata, M.; Umeda, B.; Nishibori, E.; Sakata, M.; Saito, Y.; Ohno, M.; Shinohara, H. Nature 1995, 377, 46-49. (c) Beyers, R.; Kiang, C. H.; Johnson, R. D.; Salem, J. R.; Devries, M. S.; Yannoni, C. S.; Bethune, D. S.; Dorn, H. C.; Burbank, P.; Harich, K.; Stevenson, S. Nature 1994, 370, 196-199. (d) Kikuchi, K.; Suzuki, S.; Nakao, Y.; Nakahara, N.; Wakabayashi, T.; Shiromaru, H.; Saito, K.; Ikemoto, I.; Achiba, Y. Chem. Phys. Lett. 1993, 216, 67-71.
 (3) $\mathrm{Ca} @ \mathrm{C}_{60}$ is highly O_{2} and water sensitive: Kubozono, Y.; Ohta, T.; Hayashibara, T.; Maeda, H.; Ishida, H.; Kashino, S.; Oshima, K.; Yamazaki, H.; Ukita, S.; Sogabe, T. Chem. Lett. 1995, 457-458.
 (4) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354-358.
 (5) Rubin, Y.; Parker, T. C.; Khan, S. I.; Holliman, C. L.; McElvany, S. W. Submitted for publication in J. Am. Chem. Soc.
 (6) Saunders, M.; Jimenez-Vazquez, H. A.; Cross, R. J.; Mroczkowski, S.; Gross, M. L.; Giblin, D. E.; Poreda, R. J. J. Am. Chem. Soc. 1994, 116, 2193-2194.
 (7) (a) Hummelen, J. C.; Prato, M.; Wudl, F. J. Am. Chem. Soc. 1995, 117, 7003-7004. (b) Birkett, P. R.; Avent, A. G.; Darwish, A. D.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. J. Chem. Soc., Chem. Commun. 1995, 1869-1870.
 (8) Lamparth, I.; Nuber, B.; Schick, G.; Skiebe, A.; Grösser, T.; Hirsch, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 2257-2259.
 (9) An, Y.-Z.; Ellis, G. A.; Viado, A. L.; Rubin, Y. J. Org. Chem. 1995, 60, 6353-6361.

[^1]: (10) (a) Babad, E.; Ginsburg, D.; Rubin, M. B. Tetrahedron Lett. 1968, 2361-2363. (b) Masamune, S.; Seidner, R. T.; Zenda, H.; Wiesel, M.; Nakatsuka, N.; Bigam, G. J. Am. Chem. Soc. 1968, 90, 5286-5288.
 (11) SPARTAN version 4.0.1; Wavefunction Inc.: 18401 Von Karman Avenue, Suite 370, Irvine, CA 92715.
 (12) Smith, A. B., III; Strongin, R. M.; Brard, L.; Furst, G. T.; Romanow, W. J. J. Am. Chem. Soc. 1993, 115, 5829-5830.
 (13) This surprising structure with open 6,6 -ring junctions has been proposed for a bis-azafulleroid: see ref 8 .

[^2]: (14) Note Added in Proof: A recent X-ray diffraction of $\mathbf{3}$ as a $1: 1$ compound with C_{60} confirms its structure.
 (15) Compound $1\left(\mathrm{C}_{69} \mathrm{H}_{9} \mathrm{Co} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} ; M_{\mathrm{r}}=988.92\right)$ crystallized in the monoclinic space group $P 2_{1} / c$ with cell dimensions of $a=15.00$ (1) A, b $=13.53$ (1) \AA, and $c=19.95$ (1) $\AA, \beta=111.53(2)^{\circ}, V=3767$ (4) \AA^{3}, and an occupation of $Z=4$ in the unit cell. Data were collected at 156 K on a Picker diffractometer using graphite-monochromated Mo K α radiation, to a maximum $2 \theta=60^{\circ}$, giving 11302 unique reflections; the structure was solved by direct methods (SHELX86) and refined within full matrix least squares, yielding $R=0.076, R_{\mathrm{w}}=0.081$ for 3681 independent reflections with $I>3 \sigma(I)$.
 (16) Zhou, Z.; Battaglia, L. P.; Chiusoli, G. P.; Costa, M.; Nardelli, M.; Pelizzi, C.; Predieri, G. J. Organomet. Chem. 1991, 417, 51-63.

